Lorem ipsum
Class aptent taciti sociosqu ad litora

Синтетические волокна

ОБЩИЕ СВЕДЕНИЯ

 Синтетические волокна, полученные из высокомолекулярных соединений, образуются синтезом из более простых, низкомолекулярных, веществ (фенола, этилена, ацетилена, метана и др.), полученных из каменного угля, нефти или природного газа.

 Синтетические волокна впервые были получены еще до второй мировой войны. Развитию производства синтетических волокон способствовали успехи в области синтеза высокомолекулярных соединений, а также их ценные свойства: высокая прочность, упругость, стойкость к действию влаги, диэлектрические свойства и др.

 Одними из первых синтетических волокон были волокно из хлорированного поливинлхлорида под названием ПЦ и поливинилспиртовое волокно, полученные в 1934 г. в Германии. В 1938 г. в США началось промышленное производство полиамидного волокна нейлон 66. В Советском Союзе аналогичное волокно вырабатывается под названием анид. В 1940 г. в Германии началось производство полиамидного волокна перлон на основе полимеризации капролактама. В СССР это волокно получило название капрон. В 1941 г. в Великобритании был разработан метод производства полиэфирного волокна терилен, однако промышленное производство терилена началось лишь в 1955 г. В Советском Союзе полиэфирное волокно получило название лавсан (начальные буквы слов «Лаборатория высокомолекулярных соединений Академии наук»). Промышленное производство лавсана началось в 1960 г.

 В США впервые было получено и стало производиться полиакрилонитрильное волокно орлон. В СССР аналогичное волокно под названием нитрон создано в Ленинградском институте текстильной и легкой промышленности им. С. М. Кирова.

 В дальнейшем в нашей стране были разработаны методы получения целого ряда новых видов синтетических волокон (энант, фторлон, полипропилен, спандекс и др.), имеющих огромное значение для различных отраслей народного хозяйства.

 Объем мирового производства синтетических волокон неуклонно возрастает. В 1980 г. их получено более 4 млн. т., причем около 48 % всех синтетических волокон приходится на долю полиамидных волокон, около 24% - на долю полиэфирных волокон, около 19 % - на долю полиакрилонитрильных волокон. Из других химических волокон наиболее перспективными являются поливинилхлоридные, поливинилспиртовые и полиолефиновые.

 Синтетические волокна лавсан и нитрон полноценно заменяют шерсть при значительно меньших материальных и трудовых затратах. Себестоимость 1 т этих волокон в 3 - 4 раза ниже себестоимости 1 т шерсти.

КАПРОН

 Производство капронового волокна. Сырьем для производства капрона является фенол, бензол, толуол или циклогексан, получаемые из каменного угля или нефти. Наиболее разработанным является способ промышленного производства капрона из фенола.

 Фенол путем нескольких химических реакций превращается в капролактам (мономер), который путем полимеризации (соединением молекул в длинную цепь) превращается в полимер - вещество с молекулярной массой 16 000 - 22 000, называемое смолой капрон.

 Формование капрона идет по сухому способу и заключается в том, что расплавленная смола при температуре 270 - 280'С (температура плавления смолы 215'С) продавливается через фильеры с 12 - 24 или 39 отверстиями диаметром 0,2 - 0,3 мм.

 Выходящие из фильеры струйки застывают при обдувании их холодным воздухом. Формование капрона идет с большой скоростью, достигающей 1000 м/мин, при этом нити получают 20 - 25-кратную фильерную вытяжку в горячем состоянии.

 Затем нити подвергаются вытяжке на 400 - 600 % первоначальной длины в зависимости от того, какие физико-механические свойства необходимо получить в готовом продукте. При вытяжке нити утоняются, макромолекулы в них ориентируются и нити приобретают повышенную стойкость к растяжению, повышенную упругость, уменьшаются растяжимость и остаточное удлинение (пластичность).

 После вытяжки нити замасливают, сушат, подвергают крутке и перемотке.

 Капрон получают в виде комплексных нитей линейной плотностью 29,4; 15,6; 6,7; 5; 3,3 текс, в виде моноволокна, т. е. единичных нитей линейной плотностью 2,2 и 1,7 текс.

 При производстве капронового штапельного волокна используются фильеры, содержащие 200 - 250 отверстий. Формование волокна идет со скоростью 400 - 500 м/мин. После формования полученные жгуты вытягивают, гофрируют и разрезают на штапельки определенной длины.

 Строение капронового волокна. Капроновое волокно имеет гладкую поверхность с круглым поперечным сечением (см. рис. 8, г). Поэтому волокна обладают большим блеском и пониженной цепкостью. В процессе эксплуатации изделий с применением капронового штапельного волокна структура пряжи нарушается, на поверхности изделия образуется ворс, который благодаря высокой прочности и устойчивости волокна к истиранию не обрывается, а скатывается в шарики - пиллингуется. Гладкостью капроновых нитей объясняется также раздвигаемость и осыпаемость нитей в тканях, скольжение тканей. Для повышения цепкости капроновых нитей и уменьшения их блеска все большее распространение находят способы получения профилированных (флиретт) и текстурированных (мэрон, гофрон и др.) нитей.

 Свойства капроновых волокон. Гигроскопичность капрона низкая, как у триацетатного волокна, он недостаточно гигиеничен и поэтому не рекомендуется для бельевых тканей. Недавно разработана технология получения физически модифицированной профилированной капроновой нити - шелона (крученой или текстурированной), отличающейся улучшенными гигиеническими свойствами, позволяющими в 4 - 6 раз лучше удалять излишнюю влагу из ткани и из пододежного пространства. Такие свойства шелона приближают его к натуральному шелку и позволяют использовать для бельевых тканей. Изделия из капрона хорошо смачиваются водой, а после отжима сохраняют лишь 20 - 25 % влаги (у вискозного волокна 100 %), поэтому они быстро сохнут. Во влажном состоянии капрон свойств своих почти не изменяет.

 Своеобразно действие на капрон очень горячей воды и насыщенного пара: размеры и форма нитей, тканей, изделий фиксируются и остаются неизменными при последующих обработках водой или паром более низкой температуры. Однако при обработке паром или горячей водой более высокой температуры, чем температура стабилизации, изделие теряет приданные ему размеры и форму и ему можно придать другие размеры и форму. Капрон очень чувствителен к действию повышенных температур. Уже при температуре выше 65 'С он начинает терять прочность, поэтому все тепловые обработки изделий из капрона следует проводить строго по установленным режимам.

 Капрон обладает хорошей устойчивостью к действию щелочей и достаточно устойчив к действию кислот. К действию света капрон недостаточно устойчив, но этот недостаток устраняют добавлением в смолу светостабилизаторов.

 Капроновые нити характеризуются высокими механическими свойствами: высоким пределом прочности при растяжении, что позволяет изготовлять из них тонкие и достаточно прочные изделия; высокой устойчивостью к истиранию (при добавлении к шерсти всего лишь 10 % капрона носкость изделий увеличивается в 2 - 2,5 раза); высокой упругостью (при вытягивании капрона на 16 % упругое удлинение составляет 91 %, при вытягивании 20 - 25 % - около 75 - 80 %).

 Капроновое волокно по внешнему виду напоминает искусственные волокна, но в отличие от них при поднесении к пламени проявляет тепловую усадку, плавится, а затем загорается слабым голубовато-желтым пламенем с наличием белого дымка и распространением .запаха сургуча. При удалении волокон из пламени горение постепенно прекращается, а на конце застывает темный твердый шарик.

 Из капрона вырабатываются легкие ткани и трикотаж, изящные кружева, ленты, тесьма, искусственный каракуль и др. Штапельное капроновое волокно используется в смеси с шерстью и хлопком для выработки платьевых, костюмных и пальтовых тканей.

АНИД

 Производство волокна анид. Сырьем для выработки волокна анид служит соль АГ, т. е. соль адипиновой кислоты и гексаметилендиамина - веществ, полученных синтезом фенола, бензола, циклогексана или фурфурола и других простых веществ. Соль АГ путем поликонденсации превращается в смолу анид.

 Формование ведется из расплава полимера на том же оборудовании и по тому же принципу, что и формование капрона.

 Волокно анид получает примерно такую же вытяжку, как и капрон.

 Волокно анид выпускается в виде комплексных нитей, моноволокна и штапельного волокна.

 Свойства волокна анид. Свойства волокна анид во многом сходны со свойствами капрона. Прочность, растяжимость, упругость, гигроскопичность, устойчивость к истиранию, способность сохранять форму изделий, фиксированную запаркой, у этих волокон примерно одинаковы.

 Основной особенностью анида является то, что оно несколько более теплостойко (температура плавления 255 'С, температура влажно-тепловой обработки изделия 150-160 'С) и лучше окрашивается, чем капрон.

 За рубежом такое волокно под названиями нейлон 66 (США), ниплон (Япония) и другими широко используется для выработки разнообразных' тканей, верхнего и бельевого трикотажа, мужских трикотажных сорочек, перчаток и чулочно-носочных изделий. Кроме того, это волокно находит большое применение в производстве искусственного меха, швейных ниток и многого другого.

ЛАВСАН

 Производство волокна лавсан. Сырьем для выработки лавсана служат диметиловый эфир терефталевой кислоты (сокращенно диметилтерефталат, или ДМТ) и этиленгликоль.

 Процесс получения смолы лавсан идет в две стадии. Сначала при взаимодействии ДМТ с этиленгликолем получают дигликолевый эфир терефталевой кислоты, а затем реакцией поликонденсации последнего получают полиэтилентерефталат или смолу лавсан молекулярной массой 15000 - 20000. Формование лавсана аналогично формованию капрона и осуществляется на том же оборудовании. Для формования комплексных нитей используют фильеры с 8 - 40 отверстиями диаметром 0,5 - 0,6 мм. Скорость формования волокна 500 - 1200 м/мин. Для формования штапельного волокна используют фильеры с 80 - 175 отверстиями. Полученное волокно состоит из аморфного полимера и не обладает свойствами, необходимыми для выработки изделий. В связи с этим волокно вытягивают на 400 % при температуре 70 - 95'С. При этом макромолекулы полимера ориентируются вдоль оси волокна и образуют кристаллическую структуру полимера. Волокно приобретает большую прочность, эластичность, его усадочность снижается до 9 - 15 %.

 Вытянутое волокно подвергают термофиксации горячим воздухом при температуре 130 - 155'С в течение 1 - 3 мин. В результате фиксируется форма волокна, усадка в кипящей воде снижается до 1 - 5 %.

 Штапельное волокно длиной 40 - 120 мм получают разрезанием жгута после вытягивания, гофрирования и термофиксации.

 В зависимости от назначения лавсановое волокно может быть получено блестящим или матированным, суровым или окрашенным в массе.

 Строение лавсанового волокна. Как и капроновые волокна, лавсан имеет гладкую поверхность с круглым поперечным сечением (см. рис. 8, г), вследствие чего он обладает большим блеском и пониженной цепкостью. Изделия из лавсанового волокна пиллингуются. Для устранения этого недостатка лавсановые волокна вырабатывают извитыми и профилированными

 Свойства лавсановых волокон. По сравнению с полиамидными волокнами лавсановое волокно обладает меньшей гигроскопичностью, большей устойчивостью к действию воды и высокими теплостойкостью, светостойкостью и хемостойкостью.

 Механические свойства лавсана примерно такие же, как у капрона. Очень высока упругость лавсана. Складки и плиссе на изделиях чрезвычайно стабильны, сохраняются при стирке и чистке. Добавив в смесь любых волокон лавсан, можно увеличить устойчивость плиссировки тканей из них. Однако устойчивость к истиранию у лавсана в 4 - 4,5 раза ниже, чем у капрона, но выше, чем у искусственных волокон, хлопка, шерсти и нитрона.

 По теплопроводности и несминаемости волокно лавсан похоже на шерсть. Изделия из этого волокна имеют шерстеподобный вид.

 Волокно лавсан не подвержено повреждению молью, действию плесени и гнилостных микроорганизмов.

 В обычных условиях лавсан плохо окрашивается, что объясняется высокой кристалличностью и малыми размерами пор. Наилучший эффект окрашиваемости достигается крашением волокна в массе (до формования волокна) или крашением при повышенной температуре (около 200'С) и повышенном давлении.

 Разработан метод получения модифицированного полиэфирного волокна, отличающегося лучшей способностью окрашиваться обычными красителями, применяемыми для крашения природных и искусственных волокон.

 Лавсановое волокно не отличается по внешнему виду от других химических волокон. Горит оно слабо, желтоватым пламенем, выделяя черную копоть. После затухания пламени застывает твердый шарик черного цвета.

 Волокно лавсан благодаря целому ряду положительных свойств находит широкое применение для изготовления изделий народного потребления и для технических целей.

 Штапельное волокно лавсан используют в чистом виде, в смеси с шерстью, хлопком, льном, с разными химическими волокнами. Из пряжи с лавсаном изготавливают разнообразные ткани, нетканые материалы, трикотаж, искусственный мех.

 Лавсановые нити используют в основном для изготовления тканей технического назначения, швейных ниток, а также текстурированной нити мэлан (бэлан).

 За рубежом из полиэфирных нитей изготовляют ткани (сорочечные, блузочные, галстучные и др.) и трикотажные изделия.

СПАНДЕКС

 Полиуретановые волокна выпускаются под общим названием спандекс (высокоэластичное). Впервые это волокно получено в 1960 г. в США. Основными разновидностями волокна спандекс являются волокна под фирменными названиями вирен, ликра.

 Производство волокна спандекс. Сырьем для производства волокна спандекс являются различные диизоцианаты и гликоли, из которых в присутствии диаминов получают полиуретан. Полиуретанами называются высокомолекулярные соединения, макромолекулы которых содержат уретановую группу (-ОСОNН-).

 Для обеспечения высокой эластичности полимера и гибкости макромолекулы в нее вводят гибкие блоки, в качестве которых используют простые или сложные полиэфиры. Полиэфиры, взаимодействуя с диизоцнанатами, образуют макродиизоцианаты, у которых на конце молекулы содержатся высокореакционно-способные изоцианатные группы (-NСО).

 При взаимодействии макроизоцианатов с диаминами образуется высокомолекулярный полиуретан (молекулярная масса 13000 - 30000), состоящий из гибких блоков, в которые входят уретановые группы, и из жестких блоков, включающих в себя мочевину.

 Формование волокна спандекс может производиться мокрым и сухим способами. Волокна получают главным образом в виде комплексной нити линейной плотностью от 2,2 до 500 текс и в виде штапельного волокна линейной плотностью 0,66 текс.

 Свойства волокна спандекс. Свойства волокон спандекс характеризуются следующими показателями: низкой гигроскопичностью (0,8 - 0,9 %) и теплостойкостью (тепловые обработки рекомендуется проводить при температуре не выше 80 - 100'С), высокой хемостойкостью, недостаточной светостойкостью, хотя и лучшей, чем у нитей из резины, низкой разрывной нагрузкой (6 - 7 сН/текс), хорошей устойчивостью к истиранию. Горит спандекс подобно лавсану.

 Главные достоинства волокон спандекс - легкость (плотность 1,21 г/см³), мягкость, белый цвет, высокая устойчивость к плесени и поту, хорошая окрашиваемость, неизменность свойств при намокании, высокая растяжимость (500 - 700 %) и эластичность (подобны резине).

 Высокая растяжимость и эластичность волокон спандекс объясняются особым строением макромолекул, напоминающим спиральные пружины, расположенные неориентированно и связанные в отдельных местах жесткими связями.

 Волокна спандекс перерабатывают в изделия как в чистом виде, так и опряденными хлопком, искусственными или синтетическими волокнами. Растяжимость опряденных нитей спандекс снижается до 180 - 200 %. Спандекс предназначен главным образом для изготовления эластичных изделий.

 С волокнами спандекс вырабатывают эластичное трикотажное полотно, ткани для предметов женского туалета (корсеты, пояса и др.) и спортивной одежды (купальники и тренировочные костюмы), чулочно-носочные изделия, эластичные ткани для чехлов, эластичные отделочные кружева, ленты, тесьмы и др.

Категория: Материалы | Добавлено: 21.07.2021
Просмотров: 102 | Рейтинг: 0.0/0

Всего комментариев: 0
avatar